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The j-function

Let H := {z ∈ C : Im(z) > 0} be the complex upper half-plane.

GL+
2 (R) is the group of 2× 2 matrices with real entries and positive

determinant. It acts on H via linear fractional transformations. That is, for

g =

(
a b
c d

)
∈ GL+

2 (R) we define

gz =
az + b

cz + d
.

The function j : H→ C is a modular function of weight 0 for the modular
group SL2(Z) defined and analytic on H.
j(gz) = j(z) for all g ∈ SL2(Z).
By means of j the quotient SL2(Z) \H is identified with C (thus, j is a
bijection from the fundamental domain of SL2(Z) to C).
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Modular polynomials

There is a countable collection of irreducible polynomials
ΦN ∈ Z[X ,Y ] (N ≥ 1) such that for any z1, z2 ∈ H

ΦN(j(z1), j(z2)) = 0 for some N iff z2 = gz1 for some g ∈ GL+
2 (Q).

The polynomials ΦN are called modular polynomials.
Two elements w1,w2 ∈ C (or from any field) are called modularly
independent if they do not satisfy any modular relation ΦN(w1,w2) = 0.
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j-special varieties

Definition
A j-special subvariety of Cn (coordinatised by ȳ) is an irreducible component of a
variety defined by modular equations, i.e. equations of the form ΦN(yi , yk) = 0 for
some 1 ≤ i , k ≤ n where ΦN(X ,Y ) is a modular polynomial.

Definition
A subvariety U ⊆ Hn (i.e. an intersection of Hn with some algebraic variety) is
called H-special if it is defined by some equations of the form zi = gi,kzk , i 6= k ,
with gi,k ∈ GL+

2 (Q), and some equations of the form zi = τi where τi ∈ H is a
quadratic number.
For such a U the image j(U) is j-special (j is identified with its Cartesian powers).
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Modular Zilber-Pink without Derivatives

Definition
For a variety V ⊆ Cn and a j-special variety S ⊆ Cn, a component X of the
intersection V ∩ S is a j-atypical subvariety of V if

dimX > dimV + dim S − n.

Definition
Let V ⊆ Cn be an algebraic variety. We define the atypical set of V , denoted
Atypj(V ), as the union of all j-atypical subvarieties of V .

Conjecture (Modular Zilber–Pink)
Atypj(V ) is contained in a finite union of proper j-special subvarieties of Cn.
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Weak Modular Zilber-Pink without Derivatives

Definition
A j-atypical subvariety X of V ⊆ Cn is strongly j-atypical if no coordinate is
constant on X .

Let SAtypj(V ) denote the union of all strongly j-atypical subvarieties of V .

Theorem (Pila-Tsimerman, 2015)
SAtypj(V ) is contained in a finite union of proper j-special subvarieties of Cn.

The proof is based on the Ax-Schanuel theorem for the j-function (due to Pila
and Tsimerman).
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J-special varieties

Define a function J : H→ C3 by

J : z 7→ (j(z), j ′(z), j ′′(z)).

We extend J to Hn and define J : Hn → C3n as follows:

J : z̄ 7→ (j(z̄), j ′(z̄), j ′′(z̄))

where z̄ := (z1, . . . , zn) and j (k)(z̄) = (j (k)(z1), . . . , j (k)(zn)) for k = 0, 1, 2.
Note that j ′′′(z) is algebraic over j , j ′, j ′′, so we do not need to consider third
or higher derivatives.

Definition (Pila)
Let U ⊆ Hn be H-special. We denote by 〈〈U〉〉 ⊆ C3n the Zariski closure of J(U)
over Qalg. These are the J-special varieties in C3n.

Remark
J-special varieties are irreducible, and can be defined purely algebraically.
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Modular Zilber-Pink with Derivatives

Definition
For a variety V ⊆ C3n we let the J-atypical set of V , denoted AtypJ(V ), be the
union of all atypical components of intersections V ∩ T in C3n where T ⊆ C3n is
a J-special variety.

Conjecture (Pila, “MZPD”)
For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

AtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

Remark
Here we may need infinitely many J-special subvarieties to cover the atypical set
of V , but the collection is conjectured to be “finitely generated”.
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Weak Modular Zilber-Pink with Derivatives

Definition
For a J-special variety T ⊆ C3n and an algebraic variety V ⊆ C3n an atypical
component X of an intersection V ∩ T in C3n is a strongly J-atypical subvariety
of V if for every irreducible analytic component Y of X ∩ J(Hn), no coordinate is
constant on Y .

The strongly J-atypical set of V , denoted SAtypJ(V ), is the union of all strongly
J-atypical subvarieties of V .

Theorem (A., 2021)

For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

SAtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.
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Sketch of Proof - Complex Ax-Schanuel

Let Γ ⊆ Hn × C3n be the graph of J : Hn → C3n.

Let prj : C4n → Cn be the projection to the j-coordinates, i.e. the second n
coordinates.

Theorem (Complex Ax-Schanuel for j , Pila-Tsimerman 2015)
Let V ⊆ C4n be an algebraic variety and let A be an analytic component of the
intersection V ∩ Γ. If dimA > dimV − 3n and no coordinate is constant on prj A
then it is contained in a proper j-special subvariety of Cn.

Theorem (Uniform Ax-Schanuel)
Let Vc̄ ⊆ C4n be a parametric family of algebraic varieties. Then there is a finite
collection Σ of proper j-special subvarieties of Cn such that for every c̄ ⊆ C, if Ac̄

is an analytic component of the intersection Vc̄ ∩ Γ with dimAc̄ > dimVc̄ − 3n,
and no coordinate is constant on prj Ac̄ , then prj Ac̄ is contained in some T ′ ∈ Σ.

The proof is based on the compactness theorem of first-order logic.
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Sketch of Proof - Complex Ax-Schanuel
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Sketch of proof of Weak Modular ZP with Derivatives

Let T = 〈〈U〉〉 ⊆ C3n be a J-special variety and X ⊆ V ∩ T be a strongly
atypical component: dimX > dimV + dimT − 3n.

Assume A ⊆ X ∩ J(Hn) is an analytic component such that no coordinate is
constant on A. Then A ⊆ J(U) ⊆ T , and A is an analytic component of
X ∩ J(U).
Then

dimA ≥ dimX + dim J(U)− dimT >

dimV + dimT − 3n + dim J(U)− dimT = dimV + dimU − 3n.

This implies

dim((U × A) ∩ Γ) = dimA > dim(U × V )− 3n.

Now the desired result follows from Uniform Ax-Schanuel applied to the
parametric family of algebraic varieties Wc̄ × V where Wc̄ varies over the
parametric family of all C-geodesic varieties defined by GL2(C)-equations.
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Connection to Existential Closedness

In fact, the above argument proves a slightly stronger (but “more analytic”)
version of the theorem.

By applying the argument to the class of functions J(gz) where g ∈ GL2(C)
we can establish a much stronger result, which then we can translate into a
differential algebraic language (using Seidenberg’s embedding theorem).
The above-mentioned differential algebraic result also has a differential
algebraic proof which uses Differential Existential Closedness for J.
If we could state a fully algebraic version of Modular ZP with Derivatives, it
would then be more amenable to algebraic geometric and differential
algebraic methods.
To that end we need to understand which algebraic varieties V ⊆ C3n

intersect the image of J, i.e. J(Hn).
This is a special case of the Existential Closedness Conjecture stating that
broad and free varieties intersect the graph/image of J.
If Existential Closedness holds then Modular ZP with Derivatives can be
rephrased in terms of those J-atypical subvarieties which are broad and free
(these are algebraic conditions).
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