Vahagn Aslanyan

University of Manchester

2 July 2025

Vahagn Aslanyan (Manchester)

Modular ZP with Derivatives

2 July 2025

• • • • • • • • • • • •

• Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.

・ロト ・日ト ・ヨト ・ヨ

- Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = \frac{az+b}{cz+d}.$$

イロト イロト イヨト イ

- Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

• The function $j : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 for the modular group $SL_2(\mathbb{Z})$ defined and analytic on \mathbb{H} .

(日) (四) (三) (三) (三)

- Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = \frac{az+b}{cz+d}.$$

- The function j : H → C is a modular function of weight 0 for the modular group SL₂(Z) defined and analytic on H.
- j(gz) = j(z) for all $g \in SL_2(\mathbb{Z})$.

(日) (四) (三) (三) (三)

- Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

- The function $j : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 for the modular group $SL_2(\mathbb{Z})$ defined and analytic on \mathbb{H} .
- j(gz) = j(z) for all $g \in SL_2(\mathbb{Z})$.
- By means of j the quotient SL₂(ℤ) \ ℍ is identified with ℂ (thus, j is a bijection from the fundamental domain of SL₂(ℤ) to ℂ).

イロト イロト イヨト イヨト

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y] \ (N \ge 1)$ such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y] \ (N \ge 1)$ such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

• The polynomials Φ_N are called modular polynomials.

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y] \ (N \ge 1)$ such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

- The polynomials Φ_N are called modular polynomials.
- Two elements w₁, w₂ ∈ C (or from any field) are called modularly independent if they do not satisfy any modular relation Φ_N(w₁, w₂) = 0.

A *j*-special subvariety of \mathbb{C}^n (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(y_i, y_k) = 0$ for some $1 \le i, k \le n$ where $\Phi_N(X, Y)$ is a modular polynomial.

A *j*-special subvariety of \mathbb{C}^n (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(y_i, y_k) = 0$ for some $1 \le i, k \le n$ where $\Phi_N(X, Y)$ is a modular polynomial.

Definition

A subvariety $U \subseteq \mathbb{H}^n$ (i.e. an intersection of \mathbb{H}^n with some algebraic variety) is called \mathbb{H} -special if it is defined by some equations of the form $z_i = g_{i,k} z_k$, $i \neq k$, with $g_{i,k} \in \mathrm{GL}_2^+(\mathbb{Q})$, and some equations of the form $z_i = \tau_i$ where $\tau_i \in \mathbb{H}$ is a quadratic number.

イロト イヨト イヨト イヨ

A *j*-special subvariety of \mathbb{C}^n (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(y_i, y_k) = 0$ for some $1 \le i, k \le n$ where $\Phi_N(X, Y)$ is a modular polynomial.

Definition

A subvariety $U \subseteq \mathbb{H}^n$ (i.e. an intersection of \mathbb{H}^n with some algebraic variety) is called \mathbb{H} -special if it is defined by some equations of the form $z_i = g_{i,k} z_k$, $i \neq k$, with $g_{i,k} \in \mathrm{GL}_2^+(\mathbb{Q})$, and some equations of the form $z_i = \tau_i$ where $\tau_i \in \mathbb{H}$ is a quadratic number.

For such a U the image j(U) is j-special (j is identified with its Cartesian powers).

< □ > < □ > < □ > < □ > < □ >

Definition

For a variety $V \subseteq \mathbb{C}^n$ and a *j*-special variety $S \subseteq \mathbb{C}^n$, a component X of the intersection $V \cap S$ is a *j*-atypical subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Image: A match a ma

Definition

For a variety $V \subseteq \mathbb{C}^n$ and a *j*-special variety $S \subseteq \mathbb{C}^n$, a component X of the intersection $V \cap S$ is a *j*-atypical subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Definition

Let $V \subseteq \mathbb{C}^n$ be an algebraic variety. We define the atypical set of V, denoted Atyp_i(V), as the union of all *j*-atypical subvarieties of V.

• □ ▶ • □ ▶ • □ ▶ •

Definition

For a variety $V \subseteq \mathbb{C}^n$ and a *j*-special variety $S \subseteq \mathbb{C}^n$, a component X of the intersection $V \cap S$ is a *j*-atypical subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Definition

Let $V \subseteq \mathbb{C}^n$ be an algebraic variety. We define the atypical set of V, denoted Atyp_i(V), as the union of all *j*-atypical subvarieties of V.

Conjecture (Modular Zilber-Pink)

Atyp_{*i*}(*V*) is contained in a finite union of proper *j*-special subvarieties of \mathbb{C}^n .

< □ > < □ > < □ > < □ > < □ >

Weak Modular Zilber-Pink without Derivatives

Definition

A *j*-atypical subvariety X of $V \subseteq \mathbb{C}^n$ is strongly *j*-atypical if no coordinate is constant on X.

(日)、

Weak Modular Zilber-Pink without Derivatives

Definition

A *j*-atypical subvariety X of $V \subseteq \mathbb{C}^n$ is strongly *j*-atypical if no coordinate is constant on X.

Let $SAtyp_{i}(V)$ denote the union of all strongly *j*-atypical subvarieties of V.

Image: A math a math

A *j*-atypical subvariety X of $V \subseteq \mathbb{C}^n$ is strongly *j*-atypical if no coordinate is constant on X.

Let $SAtyp_i(V)$ denote the union of all strongly *j*-atypical subvarieties of V.

Theorem (Pila-Tsimerman, 2015)

 $SAtyp_i(V)$ is contained in a finite union of proper *j*-special subvarieties of \mathbb{C}^n .

・ロト ・回ト ・ヨト

A *j*-atypical subvariety X of $V \subseteq \mathbb{C}^n$ is strongly *j*-atypical if no coordinate is constant on X.

Let $SAtyp_{j}(V)$ denote the union of all strongly *j*-atypical subvarieties of V.

Theorem (Pila-Tsimerman, 2015)

 $SAtyp_i(V)$ is contained in a finite union of proper *j*-special subvarieties of \mathbb{C}^n .

The proof is based on the Ax-Schanuel theorem for the j-function (due to Pila and Tsimerman).

• Define a function $J: \mathbb{H} \to \mathbb{C}^3$ by

 $J:z\mapsto (j(z),j'(z),j''(z)).$

イロト イヨト イヨト イヨ

• Define a function $J: \mathbb{H} \to \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

• We extend J to \mathbb{H}^n and define $J: \mathbb{H}^n \to \mathbb{C}^{3n}$ as follows:

 $J: \bar{z} \mapsto (j(\bar{z}), j'(\bar{z}), j''(\bar{z}))$

where $\bar{z} := (z_1, \ldots, z_n)$ and $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \ldots, j^{(k)}(z_n))$ for k = 0, 1, 2.

• Define a function $J : \mathbb{H} \to \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

• We extend J to \mathbb{H}^n and define $J : \mathbb{H}^n \to \mathbb{C}^{3n}$ as follows:

 $J:\bar{z}\mapsto (j(\bar{z}),j'(\bar{z}),j''(\bar{z}))$

where $\bar{z} := (z_1, \ldots, z_n)$ and $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \ldots, j^{(k)}(z_n))$ for k = 0, 1, 2.

• Note that j'''(z) is algebraic over j, j', j'', so we do not need to consider third or higher derivatives.

• Define a function $J : \mathbb{H} \to \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

• We extend J to \mathbb{H}^n and define $J : \mathbb{H}^n \to \mathbb{C}^{3n}$ as follows:

 $J: \bar{z} \mapsto (j(\bar{z}), j'(\bar{z}), j''(\bar{z}))$

- where $\bar{z} := (z_1, \ldots, z_n)$ and $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \ldots, j^{(k)}(z_n))$ for k = 0, 1, 2.
- Note that j'''(z) is algebraic over j, j', j'', so we do not need to consider third or higher derivatives.

Definition (Pila)

Let $U \subseteq \mathbb{H}^n$ be \mathbb{H} -special. We denote by $\langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ the Zariski closure of J(U) over \mathbb{Q}^{alg} . These are the *J*-special varieties in \mathbb{C}^{3n} .

(日) (同) (日) (日)

• Define a function $J: \mathbb{H} \to \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

• We extend J to \mathbb{H}^n and define $J : \mathbb{H}^n \to \mathbb{C}^{3n}$ as follows:

 $J: \overline{z} \mapsto (j(\overline{z}), j'(\overline{z}), j''(\overline{z}))$

where $\bar{z} := (z_1, \ldots, z_n)$ and $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \ldots, j^{(k)}(z_n))$ for k = 0, 1, 2.

• Note that j'''(z) is algebraic over j, j', j'', so we do not need to consider third or higher derivatives.

Definition (Pila)

Let $U \subseteq \mathbb{H}^n$ be \mathbb{H} -special. We denote by $\langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ the Zariski closure of J(U) over \mathbb{Q}^{alg} . These are the *J*-special varieties in \mathbb{C}^{3n} .

Remark

J-special varieties are irreducible, and can be defined purely algebraically.

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

・ロト ・回ト ・ヨト

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\operatorname{Atyp}_{J}(V) \cap J(\mathbb{H}^{n}) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

Image: A math a math

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\operatorname{Atyp}_{J}(V) \cap J(\mathbb{H}^{n}) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

Remark

Here we may need infinitely many J-special subvarieties to cover the atypical set of V, but the collection is conjectured to be "finitely generated".

Vahagn Aslanyan (Manchester)

Definition

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component *X* of an intersection $V \cap T$ in \mathbb{C}^{3n} is a strongly *J*-atypical subvariety of *V* if for every irreducible analytic component *Y* of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on *Y*.

Image: A mathematical states and a mathem

Definition

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component *X* of an intersection $V \cap T$ in \mathbb{C}^{3n} is a strongly *J*-atypical subvariety of *V* if for every irreducible analytic component *Y* of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on *Y*. The strongly *J*-atypical set of *V*, denoted SAtyp_{*J*}(*V*), is the union of all strongly *J*-atypical subvarieties of *V*.

Image: A mathematical states and a mathem

Definition

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component *X* of an intersection $V \cap T$ in \mathbb{C}^{3n} is a strongly *J*-atypical subvariety of *V* if for every irreducible analytic component *Y* of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on *Y*. The strongly *J*-atypical set of *V*, denoted $SAtyp_J(V)$, is the union of all strongly *J*-atypical subvarieties of *V*.

Theorem (A., 2021)

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\mathsf{SAtyp}_J(V) \cap J(\mathbb{H}^n) \subseteq \bigcup_{\substack{U \in \Sigma\\ \bar{\gamma} \in \mathsf{SL}_2(\mathbb{Z})^n}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

• • • • • • • • • • • •

• Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.

- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.
- Let $pr_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection to the *j*-coordinates, i.e. the second *n* coordinates.

- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.
- Let $pr_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection to the *j*-coordinates, i.e. the second *n* coordinates.

Theorem (Complex Ax-Schanuel for j, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If dim $A > \dim V - 3n$ and no coordinate is constant on $\operatorname{pr}_j A$ then it is contained in a proper *j*-special subvariety of \mathbb{C}^n .

- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.
- Let $pr_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection to the *j*-coordinates, i.e. the second *n* coordinates.

Theorem (Complex Ax-Schanuel for *j*, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If dim $A > \dim V - 3n$ and no coordinate is constant on $\operatorname{pr}_j A$ then it is contained in a proper *j*-special subvariety of \mathbb{C}^n .

Theorem (Uniform Ax-Schanuel)

Let $V_{\bar{c}} \subseteq \mathbb{C}^{4n}$ be a parametric family of algebraic varieties. Then there is a finite collection Σ of proper *j*-special subvarieties of \mathbb{C}^n such that for every $\bar{c} \subseteq \mathbb{C}$, if $A_{\bar{c}}$ is an analytic component of the intersection $V_{\bar{c}} \cap \Gamma$ with dim $A_{\bar{c}} > \dim V_{\bar{c}} - 3n$, and no coordinate is constant on $\operatorname{pr}_j A_{\bar{c}}$, then $\operatorname{pr}_j A_{\bar{c}}$ is contained in some $T' \in \Sigma$.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.
- Let $pr_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection to the *j*-coordinates, i.e. the second *n* coordinates.

Theorem (Complex Ax-Schanuel for *j*, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If dim $A > \dim V - 3n$ and no coordinate is constant on $\operatorname{pr}_j A$ then it is contained in a proper *j*-special subvariety of \mathbb{C}^n .

Theorem (Uniform Ax-Schanuel)

Let $V_{\bar{c}} \subseteq \mathbb{C}^{4n}$ be a parametric family of algebraic varieties. Then there is a finite collection Σ of proper *j*-special subvarieties of \mathbb{C}^n such that for every $\bar{c} \subseteq \mathbb{C}$, if $A_{\bar{c}}$ is an analytic component of the intersection $V_{\bar{c}} \cap \Gamma$ with dim $A_{\bar{c}} > \dim V_{\bar{c}} - 3n$, and no coordinate is constant on pr_j $A_{\bar{c}}$, then pr_j $A_{\bar{c}}$ is contained in some $T' \in \Sigma$.

The proof is based on the compactness theorem of first-order logic.

イロト イヨト イヨト イヨト

• Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component: dim $X > \dim V + \dim T - 3n$.

Image: A math the second se

- Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component: dim $X > \dim V + \dim T 3n$.
- Assume A ⊆ X ∩ J(ℍⁿ) is an analytic component such that no coordinate is constant on A. Then A ⊆ J(U) ⊆ T, and A is an analytic component of X ∩ J(U).

Image: A math the second se

- Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component: dim $X > \dim V + \dim T 3n$.
- Assume A ⊆ X ∩ J(ℍⁿ) is an analytic component such that no coordinate is constant on A. Then A ⊆ J(U) ⊆ T, and A is an analytic component of X ∩ J(U).
- Then

 $\dim A \ge \dim X + \dim J(U) - \dim T >$ $\dim V + \dim T - 3n + \dim J(U) - \dim T = \dim V + \dim U - 3n.$

< ロ > < 回 > < 回 > < 回 > < 回</p>

- Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component: dim $X > \dim V + \dim T 3n$.
- Assume A ⊆ X ∩ J(ℍⁿ) is an analytic component such that no coordinate is constant on A. Then A ⊆ J(U) ⊆ T, and A is an analytic component of X ∩ J(U).
- Then

$$\dim A \ge \dim X + \dim J(U) - \dim T >$$
$$\dim V + \dim T - 3n + \dim J(U) - \dim T = \dim V + \dim U - 3n.$$

• This implies

$$\dim((U \times A) \cap \Gamma) = \dim A > \dim(U \times V) - 3n.$$

• • • • • • • • • • • •

- Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component: dim $X > \dim V + \dim T 3n$.
- Assume A ⊆ X ∩ J(ℍⁿ) is an analytic component such that no coordinate is constant on A. Then A ⊆ J(U) ⊆ T, and A is an analytic component of X ∩ J(U).
- Then

$$\dim A \ge \dim X + \dim J(U) - \dim T >$$
$$\dim V + \dim T - 3n + \dim J(U) - \dim T = \dim V + \dim U - 3n.$$

• This implies

$$\dim((U \times A) \cap \Gamma) = \dim A > \dim(U \times V) - 3n.$$

• Now the desired result follows from Uniform Ax-Schanuel applied to the parametric family of algebraic varieties $W_{\bar{c}} \times V$ where $W_{\bar{c}}$ varies over the parametric family of all \mathbb{C} -geodesic varieties defined by $GL_2(\mathbb{C})$ -equations.

Vahagn Aslanyan (Manchester)

• In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.

• □ ▶ • □ ▶ • □ ▶ •

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).

Image: A math a math

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).
- The above-mentioned differential algebraic result also has a differential algebraic proof which uses Differential Existential Closedness for J.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).
- The above-mentioned differential algebraic result also has a differential algebraic proof which uses Differential Existential Closedness for *J*.
- If we could state a fully algebraic version of Modular ZP with Derivatives, it would then be more amenable to algebraic geometric and differential algebraic methods.

Image: A math the second se

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).
- The above-mentioned differential algebraic result also has a differential algebraic proof which uses Differential Existential Closedness for J.
- If we could state a fully algebraic version of Modular ZP with Derivatives, it would then be more amenable to algebraic geometric and differential algebraic methods.
- To that end we need to understand which algebraic varieties $V \subseteq \mathbb{C}^{3n}$ intersect the image of J, i.e. $J(\mathbb{H}^n)$.

イロト イヨト イヨト イ

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).
- The above-mentioned differential algebraic result also has a differential algebraic proof which uses Differential Existential Closedness for J.
- If we could state a fully algebraic version of Modular ZP with Derivatives, it would then be more amenable to algebraic geometric and differential algebraic methods.
- To that end we need to understand which algebraic varieties $V \subseteq \mathbb{C}^{3n}$ intersect the image of J, i.e. $J(\mathbb{H}^n)$.
- This is a special case of the Existential Closedness Conjecture stating that *broad* and *free* varieties intersect the graph/image of J.

・ロト ・日 ・ ・ ヨト ・ ヨ

- In fact, the above argument proves a slightly stronger (but "more analytic") version of the theorem.
- By applying the argument to the class of functions J(gz) where g ∈ GL₂(C) we can establish a much stronger result, which then we can translate into a differential algebraic language (using Seidenberg's embedding theorem).
- The above-mentioned differential algebraic result also has a differential algebraic proof which uses Differential Existential Closedness for J.
- If we could state a fully algebraic version of Modular ZP with Derivatives, it would then be more amenable to algebraic geometric and differential algebraic methods.
- To that end we need to understand which algebraic varieties $V \subseteq \mathbb{C}^{3n}$ intersect the image of *J*, i.e. $J(\mathbb{H}^n)$.
- This is a special case of the Existential Closedness Conjecture stating that *broad* and *free* varieties intersect the graph/image of J.
- If Existential Closedness holds then Modular ZP with Derivatives can be rephrased in terms of those *J*-atypical subvarieties which are broad and free (these are algebraic conditions).